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Abstract

Generally, odor qualities are evaluated via sensory tests in which predefined criteria are assessed by panelists and stochasti-
cally analyzed to reduce human inconsistencies. Because this method requires multiple, well-trained human subjects, a more 
convenient approach is required to enable predictions of odor qualities. In this article, we propose an approach involving 
linking internal states of the olfactory system with perceptual characteristics. In the study, the glomerular responses of rats 
were taken to represent internal olfactory system states. Similarities between the glomerular responses of rats were quanti-
fied by correlations between glomerular activity patterns, overlap rate of strongly activated part across glomerular activity 
patterns, and the similarity between histograms of the strength of activity. These indices were then compared with perceptual 
similarities measured from human subjects in sensory tests. The results of experiments involving 22 odorants showed medium 
strength correlations between each index and perceptual similarity. In addition, when the 3 indices were combined using their 
Euclidean distance, we observed middle to high correlations (r = 0.65–0.79) to human perceptual similarity. We also report 
the results of our use of a machine learning technique to classify the odorants into a similar and dissimilar category. Although 
the correct rate of classification varied from 33.3% to 92.9%, these results support the feasibility of linking the glomerular 
responses of rats to human perception.
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Introduction

A sensory test is the most common method of evaluating 
odor qualities. However, as olfactory perception differs from 
person to person and depends on their health and testing 
environments, maintaining the robustness of such testing 
requires a number of extremely well-trained panelists (Sato 
1978).

In the field of engineering, a variety of sensing systems 
have been developed (Persaud and Dodd 1982). Such sys-
tems generally involve the application of a neural network 
or multivariate statistical analysis to identify odors based on 
the output of a sensor array, with each sensor responding 

to a specific volatile odor component (Branca et  al. 2003; 
Ehret et al. 2011). Although most conventional odor-sensing 
systems focus on the identification or detection of specific 
odors, Haddad et al. (2010) recently reported an important 
achievement in assessing odor qualities perceived by humans 
through predicting odorant pleasantness from the output 
of artificial odorant sensors. However, one limitation of 
using artificial sensors to predict perceptual characteristics 
of humans is potential gaps between artificial and biological 
information processing algorithms because the anatomy and 
physiology of the olfactory system is not fully understood.

D
ow

nloaded from
 https://academ

ic.oup.com
/chem

se/article/39/2/91/602047 by guest on 13 M
arch 2024

mailto:sozu@bsys.hiroshima-u.ac.jp


92 Z. Soh et al.

An approach other than artificial sensors worth not-
ing is the use of  physicochemical descriptors of  odorant 
molecules (Khan et al. 2007; Haddad, Khan, et al. 2008; 
Haddad, Lapid, et al. 2008; Saito et al. 2009). The defini-
tion of  such descriptors is based on the number and type 
of  atoms involved and their combination and structure 
within a molecule. Khan et  al. (2007) demonstrated that 
odorant pleasantness can be predicted from principal com-
ponent analysis using about 1600 descriptors. However, 
there are no guidelines for establishing a conversion algo-
rithm between physicochemical descriptors and perception 
because of  a lack of  detailed information regarding odor-
ant processing algorithms in biological olfactory systems, 
which is the same problem limiting the use of  artificial 
odorant sensors.

In this study, we focused on systematically organiz-
ing information about the internal state of  the olfactory 
system instead of  determining information processing 
mechanisms. Our understanding of  the mechanisms sub-
serving odor information processing in the olfactory 
system reached a breakthrough with the discovery of  olfac-
tory receptor proteins and the gene family of  receptors for 
odorant molecules (Buck and Axel 1991). Another impor-
tant development was the formulation of  the odor map for 
responses evoked on the glomerular layer of  the olfactory 
bulb (Johnson et al. 1998; Mori 1999; Uchida et al. 2000; 
Mori and Sakano 2011, Falasconi et al. 2012). Comparing 
glomerular activity patterns with the behavior of  rats, 
Youngentob et  al. (2006) found that the activity patterns 
evoked on the rats’ olfactory bulb are closely related to 
their behavior. These findings have expanded the potential 
for analysis of  the relationships between perceptual charac-
teristics and odorants by taking the internal states of  olfac-
tory system into consideration.

Based on this background, we herein propose a new 
approach for predicting olfactory perception in humans based 
on neural activity in the olfactory system, such that odorant 
qualities perceived by humans can be assessed in a more bio-
logically natural way. In this study, it was assumed that olfac-
tory perception characteristics are preserved to a certain extent 
across species, and rat activity patterns were applied to predict 
perceptual characteristics of humans based on previous work 
(Zhang and Firestein 2002; Mandairon et al. 2009) and the 
fact that the structure of the rat olfactory system (Figure 1) is 
similar to that of humans (Firestein 2001). As a first step, this 
article discusses the relationship between features extracted 
from glomerular activity patterns on the olfactory bulb of rats 
and perceptual similarity of odorants across humans to sup-
port prediction of odorant qualities.

Materials and methods

Among several sensory test protocols, evaluating the percep-
tual similarity to a defined standard odor is one of common 
protocol. For instance, in the sensory test on Japanese sake, 

a list of standard odors called the “Flavor wheel” provides 
a criterion for evaluation (Utsunomiya et al. 2006). This list 
also defines the odorant components in detail. Well-trained 
human panelists then smell the odor and determine whether 
the test odor contains odors defined in the Flavor wheel. As 
this assessment evaluates an odor in the space spanned by 
similarities to the standard odors, if  prediction of the per-
ceptual similarity between odors becomes possible, such 
a prediction method can support or replace this kind of 
sensory test.

This article proposes a machine learning approach for 
predicting the perceptual similarities of humans using glo-
merular activity patterns of rats. However, because there 
are about 2000 glomeruli, the glomerular activity patterns 
are high dimensional information that can cause so-called 
curse of dimensionality when applying machine learning 
technique. We thus defined 3 indices for describing the simi-
larities between activity patterns and used them to predict 
perceptual similarities. To test the relationship between the 
defined indices and perceptual similarities, a series of sen-
sory tests on human subjects was also conducted. This sec-
tion describes the definition of these indices, the protocol of 
the human sensory test, and the methods used for the predic-
tion of odor similarity.

Digitization of glomerular activity patterns

To predict perceptual similarity based on the neural rep-
resentation of  an odor, we focused on activity in the glo-
merular layer on the olfactory bulb. Johnson et al. (1998) 
measured whole glomerular activity patterns from rats 
using 2-deoxyglucose (2DG) and compiled an open access 

Figure 1. Illustration of the olfactory system and glomerular activity pat-
terns. The glomeruli accumulate signals from olfactory receptor neurons 
expressing a particular type of receptor. The glomerular activities are then 
sent to the olfactory cortex via mitral and tufted cells in the olfactory 
bulb. Therefore, glomerular activity patterns are the basic input for fur-
ther processing in the olfactory system. The lower row shows examples 
of glomerular activity wherein similar odor qualities evoked similar activity 
patterns.
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database (http://gara.bio.uci.edu/). Currently, glomerular 
activities corresponding to about 400 kinds of  odorants are 
available from this Web site. Glomerular activity patterns 
used in this article are shown in Figure  2. Although the 
2DG method cannot measure dynamic responses, it pro-
vides measures of  activity patterns across the whole bul-
bar surface. The activity patterns shown in Figure  2 are 
a ventral-centered view of  an unrolled map of  the bulbar 
surface provided in .png format at an image size of  197 
by 357 pixels. The brightness of  each pixel represents the 
spatial distribution of  2DG uptake normalized by z-scores 
relative to entire glomerular layer. A key relating brightness 
to z-scores is shown as a gray scale bar in Figure  3. The 
z-scores are linearly normalized to a range of  [0, 1] from the 
original range of  [−2, 7].

Before calculating the indices between the activity pat-
terns, we trimmed the length of  the data to obtain equally 
sized vectors because each activity pattern had a different 
shape and thus a different sized activity pattern vector. To 
carry out this operation, we first made a lattice filter sized 
of  37 × 86 lattices filter as shown in Figure 3, where a value 
of  1 denotes that it is in the glomerular layer, whereas 0 
indicates that it is from the background image. The filter 
boundary was manually determined by tracing the glo-
merular shape based on a previous study (Johnson et al. 
2002), and the number of  lattices was determined based 
on the number of  actual glomeruli. The original image size 
of  197 by 357 pixels was then filtered by the lattice such 
that about 4–5 by 5–6 pixels were assigned to the lattice. 
Finally, the brightness of  the pixels was converted to z-val-
ues corresponding to the strength of  the activity, and the 
strengths of  the activity in the same lattice were averaged 
to represent the overall strength of  the activity in the lat-
tice. By extracting the strength of  the activity in each part 
of  the glomerulus with the lattice filter value of  1, T lat-
tices of  activity strength Xk ∈T  were obtained (T = 1805 
in this article).

Similarity between neural activity patterns

To evaluate the similarity between activity patterns, we 
defined 3 indices. The first index is the correlation between 
different glomerular activity patterns. The second index is 
the overlap rate (Xu et al. 2003), which describes the degree 
of  shared strongly activated areas between different activity 
patterns. The third index is the degree of  similarity between 
histograms of  the strength of  activity. Correlations and 
overlap rate were chosen because they were commonly used 
to evaluate topological similarity between neural activities 
in previous studies. For example, correlations have been 
employed to discuss relationships between odorant struc-
tures and neural activity (Johnson et al. 2002), and overlap 
rate has been used to determine odor maps of  responses to 
aldehydes and esters in mice (Xu et  al. 2003). The degree 
of  similarity between histograms of  the strength of  activity 

was chosen to evaluate nontopological similarity, which is 
derived from an object image recognition technique (Bernt 
and Crowley 2000).

The Pearson’s correlation Csz between the activity pattern 
Xs of  a standard odorant and Xz of  a comparison odorant is 
given by the following equation:

Figure 2. Glomerular activity patterns in rats that are provided at the Web 
site http://gara.bio.uci.edu/. Glomerular activity patterns evoked by the 
odorants in (a) odorant sets (a) and (b) described in Sensory tests (under 
Materials and methods) and (b) odorant set (c). The gray scale represents 
the distribution of activity strength as represented by z-scores.
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where xst and xzt are the activity strength in lattice t, and xs 
and xz are the average activity strength over the activity pat-
terns Xs and Xz, respectively.

The overlap rate (Osz), defined by the following equation, 
represents the ratio of areas common to both Xs and Xz that 
show strong activity in comparison to the total area:
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The function S k( )( , )Xs s z∈  is a binarized function used 
to calculate the position of lattices that have strong activity  
(xkt > θ).

Figure 4b shows binarized activities extracted using S(Xk) 
from the original images of the activity patterns shown in 
Figure 4a, when θ was 0.52. The degree of similarity between 
histograms of the strength of activity Hszwas defined by the 
following equation:
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where Rn(Xk) is the number of  lattices in a range of  activ-
ity strengths of  Rn = [bn − 1, bn] (n = 1, 2, 3, …, N) included 
in a given activity pattern Xk, where b is the bin size of  the 
activity strength and N = 1/b is the total number of  bins.  

Figure  4d shows histograms of  the strength of  activity 
calculated from original images of  the activity patterns 
(Figure  4a), with a step size b  =  0.05 and N  =  20. Here, 
Hmax is the maximum value of  Hsz in an odorant set, as 
described in Sensory tests (under Materials and methods). 
The parameters used for the 3 indices were θ and b, as 
defined above. In this article, these parameters were empiri-
cally determined to yield the best correlations of  perceptual 
similarities across odorants.

Sensory tests

To obtain the perceptual characteristics of human subjects, 
we asked human subjects to smell odorants absorbed on a 
paper odor stick enclosed in a zipper bag and asked them 
to rate the perceptual similarities between a set of compari-
son odorants and a standard odorant. Based on previous 
sensory test procedure (Le Berre et  al. 2007; Perrin et  al. 
2008), the sensory test task was arranged in 2 phases assum-
ing that the subjects do not have specialized skills for odor 
evaluation, and that the odorants presented are novel to the 
subjects. Because memorizing the qualities of the odorants 
and completing the comparison task would be very difficult 
for untrained subjects (Kaeppler and Mueller 2013), in the 
first phase of sensory test, we asked the subjects to smell 
the odorants freely and repeatedly to facilitate the subjects 
getting familiar with the odorants. In the second phase, a 
standard odorant was presented, and the subjects smelled 
other comparison odorants and categorized the odorants as 
similar or dissimilar to a standard odor. This forced-choice, 
similar/dissimilar task was used because our pilot experi-
ments indicated that subjects had difficulty rating the odor-
ants using an analog scale.

It should be noted that the experimental conditions 
used with the rats (Johnson et  al. 2002) and the sensory 
test performed in this article are different. First, the odor-
ant concentrations were not strictly controlled in our task.  

Figure 3. Digitization process for the glomerular activity pattern of k = isoamyl propinoate (from http://gara.bio.uci.edu). (a) The original image is a gray 
scale picture with a black background. (b) The brightness of each pixel converted to z-scores based on the gray scale bar shown in the Web site. (c) A lat-
tice filter adapted on the matrix of converted z-scores to extract an equal sized activity pattern vector. The boundary of the lattice filter was determined by 
tracing the glomerular shape described in the literature (Johnson et al. 2002). Letters in the picture represent glomerular modules but that is beyond the 
scope of this article. (d) The calculated activity strength of all pixels xkt arranged as a Xk ∈T  vector.
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This was designed to reduce the burden on the subjects—
by, for example, eliminating the need for constraint to any 
particular delivery device—and obtain perceptual character-
istics as spontaneously as possible. The presented odorants 
were diluted using mineral oil (Yamamoto Yakuhin Co., Ltd, 
Hiroshima, Japan) on neat odorants to achieve as matched 
an intensity across odorants as possible. Before performing 
the sensory test, the intensity of the odorants was rated by 
subjects different from those who performed the sensory 
test. Conversely, in the rat experiments, saturated vapors 
over neat odorant were diluted using ultrazero grade air. The 
odorants used in the experiments and their dilution factors 
are shown in Table 1. Second, we did not match the odorant 
concentration between humans and rats because that likely 
does not guarantee equal odor intensities because of spe-
cies differences. The rats were exposed to the smell odorant 
for about 45 min under a constant odorant concentration, 
whereas the humans could freely and repeatedly smell the 
odor stick, and the odorant concentration conveyed to the 
nasal cavity could vary according to the smelling behavior 
of the subject.

The odorants were chosen based on the odor descriptors 
described along with the glomerular activity patterns on 
the Web site http://gara.bio.uci.edu/ as shown in Table  1. 
The criterion for choosing an odorant was that subjects do 
not report that it smells bad; therefore, we chose odorants 
with descriptors such as “banana” or “sweet.” A  second 
criterion was that there are a sufficient number of  odor-
ants that share the same descriptors as the chosen odorant, 

which could be used as comparison odorants, because it 
is difficult to find pairs of  single-component odorants that 
smell similar.

The above protocol was approved by the ethics com-
mittee (epidemiological study) of  Hiroshima University, 
Hiroshima, Japan, for experimentation on human sub-
jects. It complies with the Declaration of  Helsinki for 
Medical Research involving Human Subjects. All sub-
jects provided written informed consent to participate 
in the test. The details of  the sensory test procedures are 
described below:
Phase 1: Memorizing odorants

1. Subjects smelled a standard odorant (shown in Table 1) 
to memorize its smell.

2. Subjects rested for 90 s outside the examination room to 
prevent odor fatigue and to allow for indoor ventilation.

3. Subjects were presented with 6 odorants, consisting of a 
fixed group and odorant group 1–4 (Table 1). The fixed 
group was always presented in the subsequent phase 
to stabilize the ratings of other odor sets and thereby 
reduce the variance in the rating data.

4. Subjects rested for 90 s outside the examination room to 
prevent odor fatigue and to allow for indoor ventilation.

Phase 2: Similarity evaluation

5. Subjects were presented with the 6 comparison odorants 
and were asked to select those odorants that smelled 

Figure 4. Examples of overlap rate and histograms of the strength of activity. (a) Glomerular activity patterns evoked by isoamyl propionate and isopropyl 
propionate; (b) binarized activity, S(Xk); and (c) the area of overlap (in black) when isopropyl propionate is the standard activity pattern, Xs; (d) histograms 
of the strength of activity showing the complexity of the distribution of activity.
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Table 1 Sets of odorant used in the sensory testing

Presenting set Odorant name 
(abbreviation)

Dilution factor  
(human)

Dilution 
factor (rat)

Odor descriptors Literature

(a) Odorant set (a)

Fixed group 1-Pentanol (1P) 1/120 1/110 Fusel, sweet Johnson et al. (2004)

2-Heptanone (2H) 1/80 1/29 Fruity, spicy, cinnamon, 
banana

Johnson et al. (2004)

Geraniol (G) 1/20 1/8 Sweet, rose, woody, floral Johnson et al. (2002)

Group 1 Amyl butyrate (AB) 1/20 1/10 Banana http://gara.bio.uci.edu

Butyl butyrate (BB) 1/10 1/10 Banana http://gara.bio.uci.edu

Isoamyl butyrate (IB) 1/10 1/14 Fruity, apricot, pineapple, 
banana

Johnson et al. (1998)

Group 2 Ethyl butyrate (EB) 1/50 1/225 Banana, pineapple, berry, 
cognac

Johnson et al. (2004)

Isoamyl acetate (IA) 1/40 1/91 Fruity, banana, sweet, 
solvent

Johnson et al. (2002)

Propyl propionate (PP) 1/40 1/224 Fruity, floral, apple, 
pineapple

Johnson et al. (2005)

Group 3 Amyl acetate (AA) 1/50 1/72 Banana, pear, sweet, fruity Johnson et al. (2005)

Isopropyl propionate (IPP) 1/40 1/395 Fruity, sweet, pineapple, 
banana

Johnson et al. (2005)

Neryl acetate (NA) 1/5 1/8 Orange blossom, rose, 
sweet, fruity

Johnson et al. (2007)

Group 4 o-Anisaldehyde (oA) 1/30 a Phenolic, sweet, balsam, 
floral

Johnson et al. (2002)

Ethyl caproate (EC) 1/50 1/21 Wine, apple, banana, 
brandy

Johnson et al. (2004)

Amyl butyrate (AB) 1/20 1/10 Banana http://gara.bio.uci.edu

Standard Isoamyl propionate(IP) 1/20 1/87 Banana http://gara.bio.uci.edu

(b) Odorant set (b)

Fixed group 1-Pentanol (1P) 1/120 1/110 Fusel, sweet Johnson et al. (2004)

2-Heptanone (2H) 1/80 1/29 Fruity, spicy, cinnamon, 
banana

Johnson et al. (2004)

Geraniol (G) 1/20 1/8 Sweet, rose, woody, floral Johnson et al. (2002)

Group 1 Amyl butyrate (AB) 1/20 1/10 Banana http://gara.bio.uci.edu

Isoamyl propionate (IP) 1/20 1/10 Banana http://gara.bio.uci.edu

Isoamyl butyrate (IB) 1/10 1/14 Fruity, apricot, pineapple, 
banana

Johnson et al. (1998)

Group 2 Ethyl butyrate (EB) 1/50 1/225 Banana, pineapple, berry, 
cognac

Johnson et al. (2004)

Isoamyl acetate (IA) 1/40 1/91 Fruity, banana, sweet, 
solvent

Johnson et al. (2002)

Propyl propionate (PP) 1/40 1/224 Fruity, floral, apple, 
pineapple

Johnson et al. (2005)

Group 3 Amyl acetate (AA) 1/50 1/72 Banana, pear, sweet, fruity Johnson et al. 2005

Isopropyl propionate (IPP) 1/40 1/395 Fruity, sweet, pineapple, 
banana

Johnson et al. (2005)

Neryl acetate (NA) 1/5 1/8 Orange blossom, rose, 
sweet, fruity

Johnson et al. (2007)

D
ow

nloaded from
 https://academ

ic.oup.com
/chem

se/article/39/2/91/602047 by guest on 13 M
arch 2024

http://gara.bio.uci.edu
http://gara.bio.uci.edu
http://gara.bio.uci.edu
http://gara.bio.uci.edu
http://gara.bio.uci.edu
http://gara.bio.uci.edu


Human Sense of Smell and Neural Activity in the Olfactory Bulb of Rats 97

similar to the standard odor. This experiment was per-
formed under the following conditions:

•	 Odorants were presented using a zipper bag containing 
a paper odor stick. The odor stick was dipped into the 
appropriate odor oil before the experiment.

•	 Subjects could smell the odors at any time, and there 
was no limitation on repeated smelling of the presented 
odors.

The odorant group, except the fixed group, was changed, 
and steps 1–5 were repeated until the subjects completed 
the evaluation of  all test odorants. This test was thus con-
ducted 4 times for odorant set (a) and (b) and 1 time for 
odorant set (c). Six subjects (college students) in their twen-
ties participated in the tests. The sensory test for each odor-
ant set (Table 1) was performed on different days for each 
subject.

We recorded a score of 1 when the comparison odor was 
judged to be “similar” to the standard odor and 0 when the 
comparison odor was judged to be “dissimilar.” The percep-
tual similarity, D, between odorants was defined as the pro-
portion of total ratings that were rated as “1.”

Predictors of perceptual similarity

First, the Euclidean distance among the 3 indices were 
defined as the degree of difference between activity patterns 
related to the standard odorant and those related to the com-
parison odorants. Because the indices are C O Hszsz sz= = = 1 
when a glomerular activity pattern is exactly the same as that 
of standard odorant, dissimilarity between the activity pat-
terns related to the standard odorant and those related to the 
comparison odorants was defined as

 e C O Hsz sz sz sz= −( ) + −( ) + −( )1 1 1
2 2 2

 . (5)

We then investigated the relationship between this glomeru-
lar activity pattern–based Euclidean distance and perceptual 
similarity, D.

Subsequently, predictions of similarities for all odorants 
were carried out using the log-linearized Gaussian mixture 
network (LLGMN; Tsuji et al. 1999). LLGMN expands the 
Gaussian mixture model to a neural network using a log-
linearized method to approximate the probability density 
function (pdf) of the output vector on the input vector space 
and enables estimation of a posteriori probability of each 
class Y m (m = 1, …, M; M is the number of classes) given an 

Presenting set Odorant name 
(abbreviation)

Dilution factor  
(human)

Dilution 
factor (rat)

Odor descriptors Literature

Group 4 o-Anisaldehyde (oA) 1/30 a Phenolic, sweet, balsam, 
floral

Johnson et al. (2002)

Ethyl caproate (EC) 1/50 1/21 Wine, apple, banana, 
brandy

Johnson et al. (2004)

Amyl butyrate (AB) 1/20 1/10 Banana http://gara.bio.uci.edu

Standard Butyl butyrate (BB) 1/10 1/10 Banana http://gara.bio.uci.edu

(c) Odorant set (c)

Fixed group Cis-Jasmone (CJ) 1/10 1/8 Floral, woody, jasmine, 
citrus

http://gara.bio.uci.edu

Citronellol (CI) 1/20 1/36 Rose, floral, petal, waxy Johnson et al. (2007)

Geranyl acetate (GA) 1/10 1/8 Rose, lavender, sweet, 
floral

Johnson et al. (2007)

Methyl anthranilate (MA) 1/10 1/8 Orange blossom, jasmine, 
musty, fruity

Johnson et al. (2005)

Group 1 Methyl anthranilate (MA) 1/10 1/8 Orange blossom, jasmine, 
musty, fruity

Johnson et al. (2005)

Methyl phenylacetate 
(MP)

1/10 1/9.9 Sweet, honey, jasmine, 
fruity

Farahbod et al. (2006)

Nerol (N) 1/10 1/8 Sweet, rose, neroli, citrus Johnson et al. (2007)

Standard Linalool (L) 1/30 1/45 Orange, sweet, bergamot, 
lavender

http://gara.bio.uci.edu

a1/8 dilution of saturated vapor over a 1/10 dilution of the neat material in a 95% ethanol dilution of saturated vapor over the neat material.

Table 1 Continued
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input vector. The following details the structure and configu-
rations of the LLGMN used in this article.

In this article, we classified the 3 similarity indices 

u = [ ]C O Hsz

T

sz sz, ,  calculated from a pair of glomerular 
activity patterns into K  =  2 classes (k  =  1, similar; k  =  2, 
dissimilar). A similar odorant to the standard odorant was 
defined as the perceptual similarity D > TD, whereas a dis-
similar odorant was defined as D ≤ TD. If  M = 2, Gaussian 
components were used to approximate the pdf for each class, 
the structure of the LLGMN can be determined, as shown 
in Figure 5. First, the LLGMN nonlinearly transforms the 
input vector u ∈3  by

 U C O H C C O O O H Hsz sz sz sz sz sz sz sz sz sz=   ∈1 2 2 2 10, , , , , , , , ,
T

  (6)

where each element of  U is in a range of  [0, 1] based on its 
definition in “Similarity between neural activity patterns”. 
The weights connecting the first layer to the second layer 
represent the parameters included in the Gaussian mixture 
model, but they are mixed because of  the log linearization. 
The second layer consists of  KM = 4 Gaussian component 
units and each unit determines the m-th Gaussian distri-
bution in a class k based on the weights connecting the 
first layer. The a posteriori probability of  a m-th Gaussian 
distribution in a class k was calculated in this layer if  an 
appropriate set of  weight parameters was acquired. The 
unit in the second layer that belongs to class k is connected 
to the k-th unit in the output layer. The output layer con-
sists of  K = 2 units, which estimates the a posteriori prob-
ability of  a class k by summing up the output of  units in 
the second layer. Here, the only parameter that has to be 
configured to determine the structure of  LLGMN is the 

Gaussian component number m. This parameter was 
empirically set based on the complexity of  the distribution 
of  input vector u.

Provided with the structure of the LLGMN described 
above, the weights between the first and second layer were 
optimized. Before performing the weight adjustment, a 
learning data set consisting of pairs of input vectors u and 

Figure  5. Structure of the log-linearized Gaussian mixture network 
(LLGMN; Tsuji et al. 1999). The input vector was composed of 3 indices as 
defined in Similarity between neural activity patterns. The network allows 
estimation for posterior probabilities of similar Y1 and nonsimilar odors Y2 
for a given input vector. The network is composed of an input layer with 
10 units, a second layer with 4 units, and an output layer with 2 units each 
corresponding to similar and nonsimilar classes.

Figure 6. Perceptual similarity obtained from the sensory tests. The x axis 
represents comparison odorants and the y axis represents the rated per-
ceptual similarity D between the comparison odorants and the standard 
odorant. Odorants are represented by the abbreviations shown in Table 1 
and arranged in descending order of D. The gray dotted line in each figure 
denotes D = 0.65. The odorants above this line were rated as similar to the 
standard odorant by the majority of subjects. (a) Odorant set (a), (b) odor-
ant set (b), and (c) odorant set (c).
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corresponding teaching vectors T ( ) ( )( )n
k
n kT= ∈  was col-

lected, and the weights in the LLGMN were initialized as 
small numbers (1). The elements of the teaching vector 
were set to Tk

n( ) = 1, if  the sample input vector belongs to 
class k otherwise Tk

n( ) = 0. For example, if  an input vector 

belongs to a similar odorant (k = 1), then T ( ) ,n T= [ ]1 0 , and 

if  it belongs to dissimilar odorant, then T ( ) ,n T= [ ]0 1 . Using 
these sample data sets, the LLGMN automatically adjusts 
the parameters based on a back propagation algorithm mini-
mizing the following evaluation function:

 J T Y
n

N

k

K

k
n k= −

= =

( )∑∑
1 1

log ,  (7)

where Yk is the output of the k-th unit in the output layer. 
The prediction procedure was carried out using a leave-one-
out method, where the parameters involved in the LLGMN 
were adjusted using all available data sets except one pre-
diction target odorant. Predictions of perceptual similarity 
were then performed by feeding prediction target odorants 
into the LLGMN. Discrimination results were defined as a 
class with the maximum posterior probability calculated by 
the LLGMN. The prediction target odorant was methodi-
cally changed until predictions were completed for all com-
parison odorants. Finally, the accuracy of the predictions for 
all odorants used in the sensory test was evaluated, as shown 
in Table 1.

Results and discussion

This section reports the results of  the sensory tests per-
formed using the protocol described in Sensory tests 
(under Materials and methods). The obtained perceptual 
similarities were compared with the 3 indices described 
in Similarity between neural activity patterns. Finally, we 
used the LLGMN described in Predictors of  perceptual 
similarity to predict perceptual similarity based on the 3 
indices. The parameter dependency of  the 3 indices and 
effects of  concentration on the accuracy of  these indices 
as predictors of  odorant perception are also discussed in 
this section.

Sensory tests

The tests described in Sensory tests (under Materials and 
methods) were performed on 6 subjects for each odorant set 
shown in Table 1. The perceptual similarity D between the 
comparison odorants and the standard odorant are shown in 
Figure 6. Using the criterion for perceptual similarity, as D 
higher than TD = 0.65, 6 corresponding odorants were classi-
fied as similar odorants for odorant set (a), 7 for odorant set 
(b), and 2 for odorant set (c). TD = 0.65 means that majority 
of the subjects (4 or more out of 6) judged the comparison 
odorant to be similar to the standard odorant.

Note that odorant sets (a) and (b) were composed of the 
same comparison odorants but different standard odorants, 
which were isoamyl propionate for odorant set (a) and butyl 
butyrate for odorant set (b). This was aimed at investigating 
the influence of the standard odor on perceptual similarity. 
From the results of the sensory test, we confirmed that both 
standard odorants smelled similar to each other. Among the 
7 odorants that smelled similar to butyl butyrate (D > 0.65 
in odorant set (b)), 6 odorants were also similar to isoamyl 
propionate. This finding suggests that the choice of standard 
odorant had minimal effects on perceptual characteristics 
in this sensory test task. In addition, group 1 and 4 in the 
both odorant set (a) and (b) contain a common comparison 
odorant amyl butyrate. This is aimed to test how the choice 
of odorant group influences the subject’s decision. The 
result confirmed that there was no subject changed decision 

Figure 7. Parameter dependencies of the indices. The solid black line shows 
the results collected with odorant set (a), the gray solid line designates the 
results for odorant set (b), and the dotted gray line designates the results for 
odorant set (c). (a) The correlation between the overlap rate Osz and percep-
tual similarity D calculated under different binarized threshold θ. A gray back-
ground demonstrates a rough range of θ yielding the highest correlation. The 
lines are truncated at approximately θ > 0.85 because there were no overlap-
ping areas for these parameters. (b) Correlation between histograms of the 
strength of activity Hsz  and the perceptual similarity D calculated under dif-
ferent bin sizes for histogram b. There was no obvious correlation; however, 
lower b values yielded more reliable correlations with D.
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Figure 8. Correlation between the indices examined and perceptual similarity D. The x axis represents odorant set, and the y axis shows the correspond-
ing correlation. (a) Performance of the index Csz calculated between glomerular activity pattern of the standard odorant and comparison odorants, (b) the 
overlap rate Osz between the activity patterns when the parameter θ was set to 0.4, and (c) the similarity between histograms of the activity patterns Hsz .  
Middle to high correlations between the indices and perceptual similarity were observed.

Figure 9. Distribution of odorant in the space spanned by the 3 indices (correlation Csz, overlap rate Osz, and similarity between histograms Hsz ). The 
radius of each circle is scaled relative to the perceptual similarity D. Black circles denote odorants with a similarity of D > 0.65, whereas white circles denote 
those with a lower similarity to the standard odorant. The drop-down lines from each point anchor the point on the Osz– Hsz  plane. Odorants with higher 
similarity tended to be distributed closer to the standard (upper left side) for all odorant sets.
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between two odorant groups that amyl butyrate is similar to 
the standard odorant. These results can be contributed by 
including a fixed group in all comparison groups to maintain 
judgment criteria of the subjects. The sensory test protocol 
thus could stabilize intrasubject variability.

Comparison between perceptual similarity and activity 
patterns

Relationships between perceptual similarity D obtained 
from the sensory tests and the 3 indices based on glomerular 
activity patterns (the correlation coefficient, Csz, the overlap 
rate, Osz, and the degree of similarity between histograms 
of the strength of activity, Hsz) were examined. Because 
parameters θ and b have to be determined for calculating 
Osz and Hsz, parameters that yield the highest correlation 
with perceptual similarity were explored. Parameter θ was 
examined in a range of [0, 1] by step size of 0.01. The results 
shown in Figure 7a indicate that the highest correlation can 
be achieved around θ = 0.4 for all odorant sets. In the same 
manner, parameter b was examined in a range of [0, 0.1] by 
step size of 0.001. The results shown in Figure 7b suggest 
that the similarity of histogram of the strength of activity Hsz  
only minimally depends on the bin size b. However, when the 
bin size b is large, a small change in b results in unpredictable 
changes in performance of Hsz. Based on the above results, 
the parameters chosen were θ = 0.4 and b = 0.01. Figure 8 
shows the performance of the indices using these parameters. 
We observed middle to high correlations between the indices 
(Csz, Osz, Hsz) and perceptual similarity D for all odorant sets 
(a), (b), and (c).

Furthermore, we plotted comparison odors on a 3-dimen-
sional graph using the 3 indices. Figure  9 shows the plot 
where the x axis is the overlap rate Osz, the y axis is the simi-
larity between Hsz, and the z axis is the correlation coefficient 
Csz. The diameter of the circles corresponds to the percep-
tual similarity D obtained from the sensory tests. The black 
circles indicate those odorants for which the perceptual simi-
larity D was TD > 0.65, whereas the white circles indicate 
those odorants for which the perceptual similarity was D 
≤ 0.65. From Figure 9, we can see that those odorants that 
were similar to a standard odorant were distributed largely 
on the upper left side compared with those with a lower per-
ceptual similarity to a standard odorant. Figure  10a plots 
the Euclidean distance esz on the x axis and the perceptual 
similarity D on the y axis for each odorant set. These figures 
confirm that a middle to high correlation exists between the 
Euclidean distance esz and perceptual similarity D, indicat-
ing that glomerular activity patterns in rats predict percep-
tual characteristics in humans.

Finally, we compared the performance of the Euclidean 
distance of the 3 indices with that calculated from the phys-
icochemical descriptors of odorants reported in a previous 
study. Haddad, Khan, et  al. (2008) reported that the per-
ceptual similarity between odorants correlates, to a certain 

degree, with the Euclidean distance of physicochemical 
descriptors. To compare the proposed approach to the pre-
vious method, we calculated 1592 different physicochemi-
cal descriptors available for the 22 odorants used in the 
sensory tests and performed principal component analysis.  

Figure  10. Relationships between perceptual similarity of the odorants 
and the Euclidean distance between the 3 indices. (a) The relationship 
between perceptual similarity D and the Euclidean distance between the 
standard odorant and the comparison odors in the 3-dimensional space 
shown in Figure 9. This figure demonstrates that the odorants with shorter 
Euclidean distances to the standard odorant tended to exhibit higher per-
ceptual similarity. (b) The relationship between perceptual similarity and 
Euclidean distance as calculated from molecular descriptors based on a pre-
viously proposed method (Haddad, Khan, et al. 2008). Comparison of the 
correlations obtained from (a) and (b) shows that activity patterns can pro-
vide equivalent or higher levels of information to human perceptual ratings.
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The Euclidean distances to the n principal components (PCs) 
of the physicochemical descriptors were then calculated 
between the standard odorant and the comparison odorants. 
These procedures were performed in the same manner as in a 
previously described method, namely, by means of the phys-
icochemical calculation software Dragon 6 (Affinity Science, 
Tokyo, Japan; Talete srl, 2011) and the statistical analysis 
toolbox in Matlab (Mathworks, Tokyo, Japan). Figure 10b 
shows comparison results between perceptual similarity D 
and the physicochemical descriptor–based Euclidean dis-
tances using 4 PCs. Figure  10b, a medium correlation is 
apparent. Analysis of odorant set (c) demonstrated that 
the proposed approach yielded a much higher correlation 
(r = −0.79, P = 0.06) than the previous method (r = −0.38, 
P = 0.45). It should be noted, however, that the P values were 
relatively high for both methods. Figure 11 shows the corre-
lation between perceptual similarity D and physicochemical 

descriptor–based Euclidean distances calculated using dif-
ferent numbers of PCs. The x axis is the number of principal 
components employed, and the y axis shows the correlation 
with D. This figure indicates that the performance of phys-
icochemical descriptor–based Euclidean distance does not 
show much improvement with the use of more than 4 PCs. 
The results shown in Figures 10 and 11 thus indicate that the 
proposed approach has equivalent or higher performance to 
the previous method.

To investigate the reasons for the clear differences between 
the proposed method and the previous method we observed 
using odorant set (c), where the standard odor was linalool 
(Figure 10). We examined the molecular structure and glo-
merular activity pattern of an odorant included in odor-
ant set (c). Figure  12a,b shows the activity patterns and 
molecular structures of the standard odorant (linalool) 
and a comparison odorant (geranyl acetate) that showed a 

Figure 11. Correlation between perceptual similarities and physicochemical descriptor–based Euclidean distances calculated from a different number of 
principal components (PCs). The x axis represents the number of PCs and the y axis represents the correlation. Since the Euclidean distance indicated differ-
ences between the odorants, the correlation had a negative value. Increasing the number of PCs beyond 4 did not improve the correlation.
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high perceptual similarity. Figure 12a,b shows that geranyl 
acetate and linalool have different functional groups and 
branching structures. These differences may nonlinearly 
map to information processing in the olfactory system and 
yield similar glomerular activity patterns. Perceptual similar-
ity thus became difficult to predict using a linear Euclidean 
distance based on physicochemical descriptors.

Predictors of perceptual similarity

The comparison results described above imply that the per-
ceptual similarity between a pair of odorants is predictable 
by the extracted indices. However, because the Euclidean dis-
tance linearly combines the 3 indices with the same weight, 
it can only evaluate the linear relationships between percep-
tual similarity and the indices. We thus applied a LLGMN 
(Tsuji et al. 1999) that can produce an optimal classification 
plane in the space of 3 indices to predict the perceptual simi-
larity of odorants. The threshold TD for odorants that are 
similar to the standard odorant was defined as TD = 0.65 as 
described in Sensory tests (under Results and discussion).

Table  2a and 2b shows the prediction results of the 
LLGMN for each odorant set. The second row contains the 
prediction results of the LLGMN, and the third row start-
ing at the left shows the results of the sensory test where 0 
denotes a dissimilar odorant (D ≤ 65) and 1 denotes a similar 
odorant (D > 0.65). In the table, successful predictions are 

shown by a gray background behind the odorant name. The 
prediction accuracies for odorant sets (a), (b), and (c) were 
78.6%, 64.3%, and 33.3%, respectively.

Because we did not match the odorant concentration 
between human and rats, and the odorant concentration was 
not strictly controlled in the sensory test, we examined the 
effects of concentration on the performance of the LLGMN. 
We measured changes in the activity patterns associated with 
the standard odorant (isoamyl propionate and butyl butyrate) 
under different concentrations and performed predictions of 
perceptual similarities. The predicted results are shown in the 
fourth row from the left of Table 2a and 2b. As a result, pre-
diction accuracy of 92.9% and 78.6% were obtained respec-
tively for odorant sets (a) and (b). Although the effects of 
concentration were not negligible, the above results strongly 
support the possibility of predicting perceptual similarity 
between odorants using glomerular activity patterns in rats. 
Relatively small changes in the correct rate can be obtained 
using a concentration normalization function in the olfactory 
bulb. A simulation study reported that the glomerulus nor-
malizes odorant concentration through interactions between 
several kinds of neurons in the olfactory bulb (Cleland et al. 
2007). Possibly as a result, interodorant differences in neural 
activity patterns were larger than intraodorant differences.

Figure 12. Glomerular activity patterns and chemical structures of the (a) 
standard odorant linalool and (b) that of the comparison odorant geranyl 
acetate with a smell similar to that of the standard odorant. To facilitate vis-
ual comparison, gray scale contrast was changed from Figure 2. Comparing 
(a) and (b), it can be observed that the activity patterns are similar even 
though the molecular structures differ.

Table 2a Classification results using a log-linearized Gaussian mixture 
network: Odorant set (a)

Standard odorant:  
Isoamyl propionate(IP)

Perceptual  
similarity

LLGMNa LLGMNb

1-Pentanol (1P) 0 0 0

2-Heptanone (2H) 0 0 1

Geraniol (G) 0 1 0

Amyl butyrate (AB) 1 1 1

Butyl butyrate (BB) 1 0 1

Isoamyl butyrate (IB) 1 1 1

Ethyl butyrate (EB) 0 0 0

Isoamyl acetate (IA) 1 1 1

Propyl propionate (PP) 0 1 0

Amyl acetate (AA) 1 1 1

Isopropyl propionate (IPP) 0 0 0

Neryl acetate (NA) 0 0 0

o-Anisaldehyde (oA) 0 0 0

Ethyl caproate (EC) 1 1 1

Prediction accuracy (%) 78.60 92.90

Accuracy to the training data (%) 100

 Correct; 0: Dissimilar; 1: Similar.
aUsing glomerular activity patterns evoked by isoamyl propionate diluted to 
1/87 of saturated vapor over the neat material.
bUsing glomerular activity patterns evoked by isoamyl propionate diluted to 
1/10 of saturated vapor over the neat material.
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The reason for the low prediction accuracy for odorant set (c) 
(Table 2c) is because most activity patterns in odorant set (c) 
shown in Figure 2b have broad and sporadic responses, espe-
cially that of the standard odorant linalool. Because of this 
feature of the 3 indices (Csz, Osz, Hsz), comparisons between 
odorants and standard odorants tend to yield a small value. As 
a result of the small range of values of the indices (Figure 9), 

determining the proper boundary plane separating similar and 
dissimilar odorants was difficult. This difficulty may arise from 
the fact that the defined indices only reflect spatial features of 
the glomerular activities. The relationships between perceptual 
characteristics and temporal features of glomerular activity 
thus should be investigated in a future study. In addition, there 
can be an overfitting problem because all of the odorant sets 
are composed of a small number of odorants. Misclassification 
could occur if data near the boundary between the similar and 
dissimilar classes were eliminated when performing leave-one-
out validation. However, it is difficult to increase the size of 
the odorant because it is difficult to find a pair of single com-
ponent odors that smell similar. This problem will be solved if  
glomerular activity patterns of odorant mixture become pre-
dictable, which we plan to accomplish in a future study.

Conclusions

In this article, human perception was compared with indices 
extracted from activity patterns evoked in the glomerular layer 
of the olfactory bulb in rats. The correlation achieved with the 
proposed method was equal to or higher than that of physico-
chemical descriptors. Similarities between odorants were also 
predicted using a neural network of 3 indices used to define 
the similarity between activity patterns. The results showed 
a prediction accuracy of 64–92%, supporting the potential 
for prediction of olfactory perception using activity patterns. 
Combining this approach with the authors’ previously pro-
posed method of predicting glomerular activity from odorant 
molecular structures (Soh et al. 2011) may provide a technique 
for predicting human perception based on such structures.

Although the proposed method showed a certain corre-
lation with human perception, the indices were empirically 
defined rather than being based on information processing 
mechanisms in olfactory systems. It should be noted that 
dynamic information processing in the olfactory system is 
likely to have a considerable impact on perception. A num-
ber of olfactory models involving different neurodynamic 
architectures have been presented in previous studies, and 
these can be used for further development of the proposed 
method. For example, Cleland and Sethupathy (2006) pro-
posed a model that considers contrast enhancement in the 
olfactory bulb, and Li (1990) described a model that simu-
lates cross-adaptation between odors. These models can pro-
vide highly suitable indices for the prediction of perceptual 
characteristics. In future studies, we intend to define more 
efficient and accurate features for predicting human olfac-
tory perceptions and to create a sensory model that can be 
used to assess such perceptions.
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Table 2c Classification results using a log-linearized Gaussian mixture 
network: Odorant set (c)

Standard odorant: Lialool (Li) Perceptual similarity LLGMN

Citronellol (CI) 1 0

Geranyl acetate (GA) 1 0

Nerol (N) 0 1

Cis-Jasmone (CJ) 0 1

Methyl anthranilate (MA) 0 0

Methyl phenylacetate (MP) 0 0

Prediction accuracy (%) 33.3

Accuracy to the training data (%) 100

 Correct; 0: Dissimilar; 1: Similar.

Table 2b Classification results using a log-linearized Gaussian mixture 
network: Odorant set (b)

Standard odorant:  
Butyl butyrate (BB)

Perceptual  
similarity

LLGMNa LLGMNb

1-Pentanol (1P) 0 0 0

2-Heptanone (2H) 0 1 0

Geraniol (G) 0 0 0

Amyl butyrate (AB) 1 1 1

Isoamyl propionate (IP) 1 0 1

Isoamyl butyrate (IB) 1 1 1

Ethyl butyrate (EB) 1 0 0

Isoamyl acetate (IA) 1 1 1

Propyl propionate (PP) 0 1 1

Amyl acetate (AA) 1 1 1

Isopropyl propionate (IPP) 0 1 0

Neryl acetate (NA) 0 0 1

o-Anisaldehyde (oA) 0 0 0

Ethyl caproate (EC) 1 1 1

Prediction accuracy (%) 64.3 78.60

Accuracy to the training data (%) 100

aUsing glomerular activity patterns evoked by butyl butyrate diluted to 1/10 
of saturated vapor over the neat material
bUsing glomerular activity patterns evoked by butyl butyrate diluted to 
1/190 of saturated vapor over the neat material

  Correct; 0: Dissimilar; 1: Similar.
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