Transplanted Human Adipose Tissue-Derived Stem Cells Engraft and Induce Regeneration in Mice Olfactory Neuroepithelium in Response to Dichlobenil Subadministration

Valeria Franceschini¹, Simone Bettini¹, Simone Pifferi², Anna Menini², Gabriele Siciliano³, Emanuela Ognio⁴, Anna Teresa Brini⁵, Enrico Di Oto⁶ and Roberto P. Revoltella⁷

¹Department of Biological, Geological and Environmental Sciences, University of Bologna, and Foundation Onlus Stem Cells and Life, Via Selmi 3, 40126 Bologna, Italy, ²International School for Advanced Studies, SISSA, Via Bonomea 265, 34136 Trieste, Italy, ³Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy, ⁴IRCCS San Martino, National Institute for Cancer Research (IST), Largo Rosanna Benzi 10, 16132 Genua, Italy, ⁵Department of Biomedical, Surgical and Odontoiatric Sciences, University of Milan, Via Vanvitelli 32, 2019 Milan, Italy, ⁶Department of Hematology and Oncology “L. and A. Seragnoli,” Section of Anatomic Pathology at Bellaria Hospital, University of Bologna, Via Altura 3, 40139 Bologna, Italy and ⁷Institute for Chemical, Physical Processes, C.N.R. and Foundation Onlus Stem Cells and Life, Via L.L. Zamenhof 8, 56127 Pisa, Italy

Correspondence to be sent to: Valeria Franceschini, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy. e-mail: valeria.franceschini@unibo.it

Accepted June 2, 2014

Abstract

We used immunodeficient mice, whose dorsomedial olfactory region was permanently damaged by dichlobenil inoculation, to test the neuroregenerative properties of transplanted human adipose tissue-derived stem cells after 30 and 60 days. Analysis of polymerase chain reaction bands revealed that stem cells preferentially engrafted in the lesioned olfactory epithelium compared with undamaged mucosa of untreated transplanted mice. Although basal cell proliferation in untransplanted lesioned mice did not give rise to neuronal cells in the olfactory mucosa, we observed clusters of differentiating olfactory cells in transplanted mice. After 30 days, and even more at 60 days, epithelial thickness was partially recovered to normal values, as also the immunohistochemical properties. Functional reactivity to odorant stimulation was also confirmed through electro-olfactogram recording in the dorsomedial epithelium. Furthermore, we demonstrated that engrafted stem cells fused with mouse cells in the olfactory organ, even if heterokaryons detected were too rare to hypothesize they directly repopulated the lesioned epithelium. The data reported prove that the migrating transplanted stem cells were able to induce a neuroregenerative process in a specific lesioned sensory area, enforcing the perspective that they could become an available tool for stem cell therapy.

Key words: herbicide, Nod-scid mice, olfactory mucosa, stem cell transplantation, tissue recovery

Introduction

Olfaction is essential to most animals, in order to mediate numerous behavioral repertoires such as food search, intra- and inter-specific interactions, and reproduction (Zarzo 2007). Accordingly, they are equipped with a complex olfactory system based on highly specialized chemosensory cells, the olfactory sensory neurons (OSNs) embedded in the olfactory epithelium (OE). In vertebrates the OE, lining the posterior half of the nasal cavity, the nasal septum, and, in mammals, also the bony turbinates, is in direct contact with the environment, as it must be to detect and transduce odorous compounds (Farbman 1990; Mori and Yoshihara 1995).

Because of their relatively unprotected position, the OSNs can be easily damaged by physical injury, by exposure to...
inhaled environmental pollutants and viruses, and are a known-entry route into the brain for pathogens and chemicals (Shipley 1985; Lewis and Dahl 1995; Tjälve et al. 1996; Mori et al. 2002; Vent et al. 2003, 2004; Jacquot et al. 2006). As a consequence of this vulnerability, the OSNs are continuously replaced throughout life by new elements originating from progenitors in the basal layer. Several classes of chemicals are known to induce OE histopathological changes, particularly organic solvents (Cruzan et al. 2002; Kasai et al. 2002; Buron et al. 2009), heavy metals (Bettini et al. 2006; Keller et al. 2006), and herbicides (Bergman et al. 2002; Kim et al. 2010). The proliferation of basal stem cells and their differentiation to neurons establishing new bulb connections can completely recover histological and functional integrity in a wide range of lesions induced by toxicants (Schwob et al. 1995; Wenuaga et al. 2000; Bergman et al. 2002). The time course of regeneration was measured: OE was completely restored within 6–8 weeks after methyl bromide-induced damage (Schwob et al. 1995), while reinnervation by 8 weeks (Schwob et al. 1999), even if receptotopy is not fully preserved. In some cases, chemical exposure can lead to chronic damage. Dichlobenil (DCB) is a commonly used herbicide, which, when intraperitoneally injected, induces extensive necrosis in mice dorsomedial OE, with permanent effects (Bergman et al. 2002; Franceschini et al. 2009a, 2009b). The damaged region shows a respiratory epithelial metaplasia with invaginations into a fibrotic lamina propria, almost completely devoid of Bowman’s glands, a possible cause of the irreversible damage. As a consequence of these toxic properties, DCB is suitable for creating an hyposmic animal model lacking neuronal stem cells in the dorsomedial olfactory region.

In recent years, stem cell transplantation has received considerable attention owing to its potential application in neurological disorder therapies. Different stem cell types, from various sources, have been studied for their effectiveness in neural replacement strategies, including: embryonic stem cells; neural stem cells from fetal or adult brain regions, in neural replacement strategies, including: embryonic stem cells; neural stem cells from fetal or adult brain regions, in particular from those in the sub-ventricular zone or dentate gyrus of the hippocampus; induced pluripotent stem cells; and a range of non-neural stem cells comprising of mesenchymal stem cells (MSCs) (Kim and de Vellis 2009; Gögel et al. 2011). Although bone marrow has for years represented the main source of MSCs in research and therapeutic studies, multipotent stem cells from more accessible sources, such as adipose tissue, have attracted great interest because of their advantages. Adipose derived stem cells (ADSCs) express the same surface markers of MSCs (Zuk et al. 2002; Lee et al. 2004), but their cell proliferation rate is higher than that of bone marrow-derived MSCs (Lee et al. 2004). Moreover, they can be isolated by a less invasive method and in larger quantities compared with bone marrow-derived MSCs. In culture, they have shown an impressive developmental plasticity, undergoing adipogenic, myogenic, chondrogenic, and osteogenic differentiation when treated with lineage-specific factors (Lee et al. 2004; Chen et al. 2012). Following neural induction ADSCs displayed immunocytochemical staining for neural stem cell markers (nestin), neuronal markers (NeuN), astrocyte markers (GFAP), and oligodendrocyte markers (CNPase) in vitro (Safford et al. 2002; Dhar et al. 2007; Jang et al. 2010). Furthermore, ADSCs could be converted into neurospheres able to differentiate into functionally active Schwann cell-like cells forming myelin structures with neuronal neurites in vitro (Xu et al. 2008). When the cells are engrafted in rats with surgically injured spinal cord, they are able to form a myelin sheath on Central Nervous System axons (Chi et al. 2010). Several recent studies also confirmed ADSCs capacity to enhance peripheral nerve regeneration and functional recovery in sciatic nerve defects (Liu et al. 2011, Scholz et al. 2011; Gu et al. 2012). Moreover, transplantation of ADSCs in rat with intracerebral hemorrhage promoted neuronal differentiation of implanted cells, tissue protection from apoptosis, and improvement of neurological function (Chen et al. 2012).

In a previous research (Franceschini et al. 2009a, 2009b), we observed that hematopoietic stem cells (UCB-CD133+), transplanted in nod-scid mice subjected to DCB inoculation, gave rise to an early regenerative process of the olfactory organ after 31 days. In the present study, we intended to evaluate the engraftment efficiency and the therapeutic potential of ADSCs in restoring olfactory integrity in acute lesioned mice.

Materials and methods

Animals

We used immunodeficient Nod-scid mice as xenotransplantation model to prevent immune rejection. Mice were purchased from Charles River Laboratories, maintained in sterile Micro-Isolator cages, and given ad libitum access to autoclaved food and acidified water, to prevent bacterial growth.

Stem cell isolation

ADSCs were obtained from aspirated subcutaneous adipose tissues from 8 female donors (aged 28–42 years) under informed consent. Fresh lipoaspirates were washed in phosphate-buffered saline (PBS), then minced, transferred to Dulbecco’s modified Eagle medium (DMEM) supplemented with penicillin (50 µg/mL), streptomycin (50 µg/mL), and 2 mM l-glutamine (control medium, CM) and digested using collagenase at 37°C for 30 min. Fragments were centrifuged (300 × g for 3 min), neutralized in CM containing 10% FCS (CM-FCS), and centrifuged again to complete the separation of the ADSCs-rich pellet from the primary adipocytes. The cells were cultured for at least 4 weeks, changing CM-FCS twice a week. From 2 mL of lipoaspirate, approximately 1 × 10^6 cells were usually generated. Adherent cells proliferated...
with an average doubling time of approximately 65 h, without significant difference in growth rate between cells derived from different lipoaspirates. Their clonogenic potential, tested by the CFU-F assay (the cells were cultured for 14 days, methanol fixed, stained with Giemsa and clusters >50 cells counted), was variable with an average of 5 CFU-F for 1×10^6 seeded cells (from a minimum of 4% to a maximum of 12%). At the second passage, the cell population showed a homogeneous fibroblast-like shape. Their phenotypic profile was tested by cytofluorometric analysis (FACSCalibur System, Becton-Dickinson). In excess of 90%, the ADSCs at the fourth cell passage expressed CD44, CD73, CD105, CD90, and HLA-ABC, whereas there was less than 2% positive for CD14 and HLA.DPQR, and cells did not express CD45, CD71, and CD106, confirming the ADSCs marker expression reported in literature (Lee et al. 2004; de Girolamo et al. 2007).

Transplantation

This study was approved by the ethics committee (Ethic Committee of the Institute for Research against Tumors [IST] of Genua and Ethic Committee of the Italian National Research Council CNR), and all experimental procedures were carried out in accordance with their guidelines. Thirty-six 2-month-old female inbred nod-scid mice were used (Figure 1). Twenty-four mice were injected i.p. twice (to minimize side effects) with DCB (Fluka) dissolved in DMSO (1 mL/g) (Bergman et al. 2002) on days 0 (50 mg/kg body weight) and 7 (20 mg/kg). Then, on day 2, each mouse was sublethally irradiated with a dose of 3.5 Gy, commonly used in transplantation protocols and sensibly less than the lethal dose of 7.5 Gy (Diaz et al. 2012b). This is a necessary recipient conditioning to enhance engraftment of transplanted human MSCs in several tissues other than their primary residence sites (Mouiseddine et al. 2007), as irradiation induces an increased concentration of chemoattractants, especially in injured tissues (see also Tabatabai et al. 2006). On day 9, 16 mice (Group A) were transplanted with previously isolated human ADSCs (75000–100000 viable cells from 1 donor per mouse) by tail vein injection, whereas the other 8 DCB-treated mice (Group B) were used as controls and injected with saline alone. The remaining 12 animals not injected with the herbicide were divided into 2 groups: 4 mice (Group C) were treated with vehicles only (DMSO and saline) on days 0 and 7 and injected with saline solution on day 9. The remaining 8 mice (Group D) were irradiated and transplanted with ADSCs.

Tissue sampling

Thirty and 60 days later, 8 mice from Group A, 4 mice from Group B, 2 mice from Group C, and 4 mice from Group D were sacrificed using carbon dioxide asphyxiation, on each occasion. They were dissected and different organs and tissues were collected for various assays: kidney, skin, and liver were immediately chilled in ice, frozen in liquid nitrogen, and then kept at −24°C for DNA analysis; the nasal region was divided into left and right halves: one was fixed by immersion in modified Bouin’s fluid, made up of a saturated aqueous solution of picric acid and formalin (ratio 3:1), for 24 h, paraffin embedded, sectioned (5 μm) and subjected to immunohistochemical, lectin staining and fluorescence in situ hybridization procedures (see Franceschini et al. 2009a for details), whereas the other was processed with kidney, skin, and liver.

DNA analysis

Polymerase chain reaction (PCR) assays were performed on total genomic DNA extracts (for details, see Franceschini et al. 2009a) to evaluate the engraftment of donor cells in all tissue samples by means of the
presence of the human-DNA HLA-DQα1 sequence. We used
(5-GTGCTGCAGGTGTAACCTGTACCCAGTT
GT-3) and (5-CACGGATCCCGTAGCAAGCGGTAGAAG
TTG-3) as the forward and reverse primers, respectively. To
establish the sensitivity of our PCR assays for human DNA
in murine DNA samples, we adopted the method of amplifi-
cation employing Taq platinum using as reference standard
curves for decreasing amounts of human ADSC DNA (from
1000 ng to 1 pg) in normal mouse liver DNA, up to 1 mg of
total DNA sample in 10 mL. This method detects 1 ng of
human DNA in 1 mg mouse DNA, after 40 cycles. To exclude
potential contaminations, randomly chosen samples positive
for HLA-DQα1 (Group A mice no. 3, 6, 10, and 14) were
additionally analyzed for the presence of 3 human-specific
STRs (D8S1179, D18S51, and D21S11) selected from the
Combined DNA Index System (CODIS), commonly used for
paternity testing and other forensic applications.

Immunohistochemistry

Antibodies used in this study were 1) mouse monoclonal
Ab to GAP-43 (1:500; Clone GAP-7B10; Sigma), a phospho-
kinase known to be expressed during axonal growth; 2) rabbit polyclonal Ab to Olfactory Marker Protein (OMP)
(1:500; Santa Cruz Biotechnology), expressed in fully differ-
entiated OSNs; 3) mouse monoclonal Ab to PCNA (1:500;
Clone PC10; Sigma) a nucleoplasmic protein most abundant
during S-phase of the cell cycle; 4) rabbit polyclonal Ab to
Pgp 9.5 (1:300; DAKO Cytomation), a marker expressed
by mature and immature OSNs and vomeronasal neurons;
5) rabbit polyclonal Ab to neurotrophic tyrosine kinase
receptor type B (TrkB) (1:100; Santa Cruz Biotechnology),
expressed by immature OSNs. Sections were processed
according to the manufacturer’s protocols; in brief, they
were deparaffinized, rehydrated, incubated with 3% hydro-
gen peroxide to quench endogenous peroxidase activity, and
then heated by microwave in citrate buffer pH 6.0 for anti-
gen retrieval, for 10 min at 750 W. After blocking with 10%
normal goat serum (NGS; Vector Laboratories), the sections
were incubated separately overnight at 4°C with primary
antibodies. The sections were then washed and incubated for
1 h and 30 min in peroxidase-labeled goat anti-rabbit (1:100;
Vector Laboratories) or mouse (1:100; Sigma) IgG. The
immunoreaction was visualized by treating the sections with
3,3 diaminobenzidine (DAB; Sigma). The sections, except
those treated with anti-PCNA, were then counterstained with
Gill’s Hematoxylin (Sigma), dehydrated, and coverslipped with Permount (Fisher Scientific). Negative controls
were provided by omission of the primary antibody, which
was replaced by 3% NGS. All the controls were negative.

Lectin histochemistry

In this procedure, the lectin used was *Bandeirea simp-
plicifolia* agglutinin isolectin B₄ (BSA-I-B₄) (10 µg/mL;
Carbohydrate specificity: α-galactose; Inhibitory agent:
Gal (200 mM; Sigma Chemical). Lectin histochemistry
was performed as follows: after dewaxing, rehydration and
peroxidase block, the slides were incubated for 3 h with
lectin (10 µg/mL in TBS 0.1 M) at room temperature in
a moist chamber. The sections were then processed as
described for immunohistochemistry. Negative controls
included competitive inhibition with the appropriate sugar
(100–200 mM) for 1 h at room temperature and buffered
saline instead of the lectin.

Image analysis

Morphometric and densitometric analysis was performed on
2 adjacent sequences (for PCNA and OMP quantification)
of semi-serial sections at 0.2 mm intervals using the Image J
software (v. 1.41o). We used 8 mice from Group A at 30 days,
8 from Group A at 60 days, 4 from Group B, 4 from Group
D, and 4 from Group C.

Dorsomedial OE thickness was measured from basal
lamina to apical surface, excluding cilia length, averaging 3
measurements for each section. The mean values of all sec-
tions represent the epithelial depth for every specimen (we
used all mice of each group).

For evaluation of proliferative activity in the dorsal OE,
all PCNA-positive nuclei were counted in the semi-serial
sections, the data collected from each olfactory organ were
averaged and expressed as number of PCNAº cells per unit
length, accordingly to Monticello et al. (1990).

To estimate the amount of mature OSNs, we chose optical
density (OD) rather than cell counts because labeled cells
are closely packed and it is difficult to discriminate between
OMP-positive elements. Control and experimental tissues
were processed at the same time to minimize differences in
OD caused by the experimental procedure. Average gray val-
ues in the area of interest were calculated with ImageJ and
converted to optical density (OD) by the following formula:
OD = log (intensity of background/intensity of area of
interest). Mean OD of each olfactory organ was determined
for every animal.

Data collected were reported as mean values of each group
± standard error of the mean (SEM) and statistically ana-
yzed by Kruskal–Wallis nonparametric test followed by
Mann–Whitney test for multiple comparisons (P values
adjusted with Holm-Bonferroni correction). P values <0.05
were considered significant.

Dual color fluorescence in situ hybridization

Sections of OE from HLA-DQα1-positive mice plus nega-
tive control mice from Groups B and C and sections of
biopsy specimens of brain and mammary gland were cho-
sen for hybridization with LSI LPL 8p22 SpectrumOrange
and LSI C-MYC 8q24.12–24.13 SpectrumGreen human
probes (ProVysion, Vysis, ABBOTT Laboratories).
Adjacent slides were incubated with pan-centromeric probes specific to human (labeled with FITC) and mouse (labeled with Cy3) sequences (Cambio) to detect heterokaryons. The slides were dewaxed, dehydrated, digested with Proteinase K/SSC 2X (0.25 mg/mL; Roche Diagnostics) at 45°C for 5 min and postfixed in 4% buffered formalin (Fluka). Sections and probes were then codenatured at 80°C for 10 min for both Vysis and Cambio probes and incubated overnight at 37°C, according to manufacturer’s recommendations. They were then stringency washed in 0.3% NP40/SSC 2× at 75°C for 2 min and mounted with DAPI (Kreatech Diagnostics). The prepared slides were observed using an Olympus BX61 epifluorescence microscope system with a JAI CV-M4+ CL digital camera and analyzed with CytoVision 3.7 software.

Electro-olfactograms

Electro-olfactograms (EOGs) were measured by placing glass capillary electrodes at the apical surface of the OE lining the olfactory turbinates and the dorsal region in the sagittally exposed medial olfactory chamber. The test panel of odorants was composed of amyl acetate, cineole, and acetophenone (Sigma), delivered as vapor-phase stimuli (for details, see Pifferi et al. 2009; Franceschini et al. 2009a; Dibattista et al. 2011). The peak amplitude of the EOG response was measured as the maximum negative voltage deflection from baseline. In some mice, the EOG responses were recorded in different points of the same region and data were averaged. Data were reported as average ± SEM, with number of recorded epithelia (n). The statistical significance of data was evaluated as described in Image analysis.

Results

PCR screening

Human xenogenic DNA was detected in PCR amplificates of ADSCs transplanted mice. The presence of the human gene HLA-DQα1 was investigated in the OE, liver, kidney, and skin, at both stages after stem cell inoculation. PCR products obtained from tissues belonging to Groups A and D mice, sacrificed 30 days after transplantation, showed the 242 bp long band corresponding to the amplified human sequence, whereas in negative controls (Groups B and C mice tissues) it was never detected (Figure 2A). However, the intensity of bands from Group D mice sacrificed at the same time was generally very low, and in one case not visible at all (Figure 2B).

Amplificates from mice sacrificed at 60 days after treatment produced very faint bands, or no signal at all (data not shown), probably because the amount of human DNA in the tissues was too low to detect.

Figure 2 PCR reaction and analysis. (A) Amplification of HLA-DQα1 gene (242 bp) on 1 mouse from Group A (Ki, Sk, Li, OE-A) and 1 mouse from Group D (OE-D), chosen as representative examples. (B) Visual scoring and subjective interpretation of band intensity: (−) no signal, (+−) barely visible positive signal, (+) moderate positive signal, and (++) intense positive signal. Abbreviations: PC, positive control (DNA from human ADSCs); NC, negative control (DNA from Group C mouse liver); Ki, kidney; Sk, skin; Li, liver; OE-A, olfactory epithelium of Group A mouse; OE-D, olfactory epithelium of Group D mouse.

Lectin staining and immunohistochemistry

DCB effects

As expected, the dorsomedial region of the OE of mice treated with the herbicide was irreversibly damaged. The morphological changes observed in Group B mice were identical to those previously reported (Franceschini et al. 2009a); in brief, the dorsomedial pseudostratified OE was replaced with a thin respiratory-like epithelium, the submucosal tissues appeared fibrotic and most of Bowman’s glands and axon bundles had disappeared, with no evidence of regeneration at either 30 or 60 days after the final DCB injection. Morphometric analysis (Figure 3A) revealed a significant decrease in thickness (~75%) compared with the OE of vehicle-treated control mice (Group C) and transplanted non-lesioned mice (Group D), which showed, instead, typical standard morphology.

In addition, the damaged region appeared negative against the pan-neuronal marker PGP 9.5 (Figure 4A), in contrast with the positive staining observed in the lateral undamaged regions and in mice belonging to control groups (Figure 4B,C). However, PCNA-stained cells, mostly close to the basal membrane, were present (Figure 4F). Despite a statistically equivalent rate of proliferation between DCB-treated and non-lesioned mice (P > 0.05) (Figure 3B), we observed a significant difference in OMP labeling (Figure 3C): OD values indicated a 4.1-fold decrease compared with DMSO-treated mice, and we could not observe OMP+ mature neurons in the lesioned OE (Figure 4G).
Figure 3 Histological quantitative analysis on dorso-medial OE of all examined groups of mice. In all the graphs, the bars displaying data from Groups B and D refer to tissues sampled at 60 days, but in all control groups there were no significant differences with measurements at 30 days. For this reason, we assumed that Group C not treated mice sacrificed at 30 and 60 days belonged to the same sample group. (A) The epithelium is thicker after ADSC transplantation, compared with nontransplanted DCB-treated mice. (B) The rate of proliferation appears the same in all groups. (C) The amount of mature OSN, indirectly measured through optical density values of OMP immunoreactivity, progressively increases in Group A mice, although it is still lower than in non-lesioned controls. Significant differences are indicated by asterisks: *P < 0.05.

Figure 4 Neuronal population in DCB-sensitive region of Groups B, C, D control mice at 60 days (A–C). (A) PGP 9.5 staining in Group B mice. The OE is substituted by a thin respiratory-like epithelium without PGP 9.5-stained cells. (B) PGP 9.5 staining in Group C mice. (C) PGP 9.5 staining in Group D mice. Without DCB subministration the morphology of dorsomedial OE is preserved and a great number of PGP 9.5+ neurons is visible. Comparison of proliferation rate (D, F, H, I) and fully differentiated OSNs distribution pattern (E, G, L, M, N, O) in the dorso-medial OE of Groups A, B, C mice. (D) PCNA staining in Group C mice. Labeled cells are localized in the basal layer. (E) OMP staining in Group C mice. (F) PCNA staining in Group B mice. Proliferating cells were distributed in all epithelial layers, as observed also in Group A mice. (G) OMP staining in Group B mice. No mature OSNs are present. In the lamina propria no olfactory axons and glands are detectable. (H) PCNA staining in Group A mice 30 days after DCB subministration. (I) PCNA staining in Group A mice 60 days after DCB subministration. (J) OMP staining in Group A mice after 30 days at low magnification. Scattered OMP-positive cells are visible (arrows). (M) OMP staining in Group A mice 60 days after DCB subministration. Some mature OSN are OMP-positive. Immunoreactive fibers are present in the lamina propria. (N) OMP staining in Group A mice 60 days after DCB subministration. The number of labeled cells is higher than at 30 days and they are organized in clusters (parentheses). (O) OMP staining in Group A mice after 60 days. In the lamina propria adenomeres of Bowman’s glands are visible. Scale bars = (A–I, O) 50 μm, (L, N) 100 μm.
ADSCs transplantation

The inoculation of ADSCs stimulated the neuronal recovery in the lesioned olfactory mucosa of Group A mice since we observed a progressive increase in OE thickness (Figure 3A), although it was not uniform along the neuroepithelial length, but limited to some areas of regeneration. Furthermore, we identified new populations of developing OSNs in the dorsomedial neuroepithelium after ADSCs transplantation. At 30 days after treatment, we observed a unicellular layer of BSA-I-B4+ elements, characterized by a neuronal pear-shaped soma, lining the basal lamina (Figure 5A). Some cells showed a dendrite-like branch, not yet fully developed, extending towards the apical surface. The identification of scattered groups of more apically located PGP 9.5+, GAP-43+, and TrkB+ cells, in the middle region of the OE, just above the germinative layer, confirmed the presence of immature OSNs at various stages of differentiation (Figure 5C,E,G). The GAP-43 and PGP 9.5 reaction products were present not only in the soma but also in the dendrites. Some OMP-stained cells were visible (Figure 4L,M) even if densitometric analysis did not reveal OD levels significantly higher than those registered in Group B mice (Figure 3C).

At 60 days posttransplantation, we could still detect cells differentiating towards neuronal lineage but the OE regeneration appeared incomplete, because both OE depth and OMP-immunoreactive labeling (Figure 3A,C), albeit increased compared with Group A1 mice, were still lower than controls. However, we observed some improvements in neuronal recovery, compared with the previous stage: the clusters of new OSNs that were composed mainly of immunopositive elements, particularly evident in PGP 9.5- (Figure 5D), TrkB- (Figure 5H), and OMP-labeled sections

Figure 5 Lectin histochemistry and immunohistochemistry showing neuronal differentiation in dorso-medial OE of Group A mice 30 and 60 days after ADSCs transplantation. A monocellular layer of BSA-I-B4+ cells lines the basal lamina at 30 days posttransplantation (A), whereas some stained elements are also visible in the second layer after 60 days (arrows) (B). At 60 days posttransplantation, the number of PGP 9.5+ (D), GAP-43+ (E), and TrkB+ (H) OSNs appears greater than the number of PGP 9.5+ (C), GAP-43+ (F), and TrkB+ (G) cells after 30 days, and the epithelium shows a pseudostratified organization 3 to 4 cells thick. Some GAP-43+ axons are visible near the basal lamina (arrowhead). Scale bars= (A, B, D–G) 25 μm, (C) 10 μm, (H) 50 μm. This figure is reproduced in color in the online version of the issue.
(Figure 4N,O), were more extensive. Moreover, GAP-43 staining was visible also in axons emerging from the basal lamina (Figure 5F). Some BSA-I-B4+ basal cells also resided in the second layer (Figure 5B).

The responsiveness to stem cell therapy is surprisingly similar in all transplanted mice, because at least some GAP-43-, PGP 9.5-, and OMP positivity were detectable in every animal belonging to Group A. Moreover, the intra-group variability in OMP quantification at 30 and 60 days was low (Figure 3C).

By contrast, the rate of cell proliferation appeared unchanged (Figure 3B) among all treatment groups.

FISH analysis

Some rare nuclei, hybridized with LSI-LPL and LSI C-MYC human probes, were detected in the dorsal region of OE of mice belonging to Group A (Supplementary Figure 1C,D), but none were detected in Groups B and C; in most cases only one of the 2 probe signals was visible, whereas in human tissue they were mostly present in pairs (Supplementary Figure 2B). The presence of human chimeric cells in the olfactory mucosa of treated mice was confirmed by double hybridization with mouse and human centromeric probes (Supplementary Figure 1A,B). In addition, we observed that heterokaryotic nuclei represented the predominant fraction of positive cells. Positive cells were observed in all epithelial layers, basal, middle, and apical. However, some fluorescent signals were also observed in elongated nuclei dispersed in the lamina propria, among capillaries and olfactory glia. Positive staining for human DNA was also present in the mucosa underlining the turbinates. Instead heterokaryons were not present in human control tissue (Supplementary Figure 2A).

We found cells with human DNA in specimens from both time stages, despite the negative PCR signal at 60 days.

Electro-olfactograms

EOGs were recorded to evaluate the functional recovery of the OE after ADSCs transplantation in DCB-treated mice. Responses to odorants were recorded both in the dorso-medial region of the OE, damaged by DCB, and in ventral zones that showed no morphological alteration (Figure 6A). We tested amyl acetate, cineole, and acetophenone, which are commonly used odorants and obtained similar results with each one. A representative EOG recording, in response to amyl acetate recorded in the dorso-medial area from a Group C, Group B, and Group A mouse is shown in Figure 6B. The typical odorant response from a control non-treated mouse (left trace) was almost completely abolished in a DCB-treated mouse (middle trace) and recovered in an ADSCs-transplanted mouse (right trace). The average EOG responses in the dorso-medial area, for each mouse group, are plotted in Figure 6C, and demonstrate a significant difference between Groups B and C mice and between Groups A and C mice.

![Figure 6](http://chemse.oxfordjournals.org/)

Figure 6 Electro-olfactograms. (A) Photomicrograph of exposed mouse olfactory organ. The black spot indicates the DCB-sensitive dorso-medial region, whereas the white spot shows a nonsensitive area in the turbinates. (B) Comparison among representative EOGs obtained from recordings in the area indicated by the black spot in (A), in response to amyl acetate from a control mouse from Group C, a DCB-treated (DCB) mouse, an ADSCs-transplanted DCB-treated (DCB + ADSCs) mouse after 60 days. The top traces indicate the time of application of the odorant stimulus. (C) Average amplitude (±SEM) of EOGs in the sensitive area was significantly different between control and DCB (control: n = 4; DCB: n = 6) and between DCB+ADSCs and DCB (DCB+ADSCs: n = 6). (D) Average amplitude of EOGs in the location indicated by the white spot in (A) was not significantly different (control: n = 4; DCB: n = 7; DCB + ADSCs: n = 6).
B and A mice. Responses to odorants measured from the area of the OE, indicated by the white spot in Figure 6A, showed no significant difference among the groups of mice ($P > 0.05$; Figure 6D).

Discussion

Our study demonstrated that transplanted ADSCs promoted tissue repair and neuroepithelium regeneration in *nod-scid* mice affected by permanent loss of OSNs in the dorsal OE after treatment with DCB. In contrast, the irreversible toxic effects of this herbicide, associated with the impairment of lamina propria and Bowman’s glands (Bergman et al. 2002; Franzen et al. 2006), were still visible in nontransplanted mice, in which the dorsal OE remained covered by a ciliated, respiratory-like epithelium after 60 days. We know from literature (Bergman et al. 2002) that just 4 days after the first DCB administration, even at lower doses, OE morphology was totally changed and no differentiating GAP-43+ DCB administration, even at lower doses, OE morphology was more sensible to DCB inoculation than in the neuroepithelium, where it barely increased 3 days after toxicant injection. Moreover, even if whole body irradiation seems to stimulate cell division in the Rostral Migratory Stream of adult rats (Bá lentová et al. 2006, 2007), we could not observe any effect on proliferation in the OE. BSA-I-B$_4$ lectin staining, specific for horizontal basal cells (Williams et al. 2004, 2007), showed an intact germinative layer, after 30 and 60 days. However, DCB has transient effects on basal cell population because a normal keratin staining pattern (another horizontal basal cell marker) close to the basal lamina was identifiable after 7 weeks (Xie et al. 2013) and 6 months (Bergman et al. 2002) from herbicide i.p. inoculation. Moreover, at a lower dose (30 mg/kg) the restoration of the keratin-positive cell population was completed at 4 weeks posttreatment (Vedin et al. 2004). As a consequence, the permanent effects of DCB seem to be concentrated on the differentiation process, because no immature OSNs could be detected in the DCB-lesioned dorsal OE (Bergman et al. 2002; Vedin et al. 2004; Xie et al. 2013). The presence of PGP 9.5+, TrkB+, GAP-43+, and OMP+ elements, absent in lesioned untransplanted mice, suggested that neurogenesis occurred. Since neurogenesis is necessary, in order to reverse the impairment status, under normal conditions, it is stimulated following damage to the OE and markers for immature neurons are upregulated (Chen et al. 2005). In particular, GAP-43 staining, related to axonal cone growth and glomerular synaptogenesis (Avwenagha et al. 2003), indicates a potential re-establishment of central olfactory nerve connections. Moreover, OMP-immunolabeling confirmed that the process of differentiation reached the last stage with the development of new fully mature OSNs.

In parallel to histological regeneration, functional recovery occurred. Despite a partial histological regeneration of the lesioned dorso-medial OE, the functional recovery appeared completely, because EOG recordings revealed that the olfactory sensitivity, which was almost completely abolished in Group B mice, regained control values in transplanted mice. In the OE of mammals, OR genes have overlapping expression areas, except for the class I OR genes, expressed by OCAM-negative OSNs exclusively localized in the dorso-medial OE (Miyamichi et al. 2005), originally
that UCB-CD133 phenotype of hybrid cells is variable and hardly predict-
somes were lost, as observed also by Kashofer et al. (2006). Unfortunately, it could not be established which chromo-
gressive loss of chromosomes during proliferative cycles. In
formation, with loss of donor genetic material (Duncan
hypothesize that they underwent hybrid formation followed
did not observe polynuclear hybrid cells, therefore we could
2009) and heterozygous PCD mice (Diaz et al. 2012a). We
high-dose irradiation (Wiersema et al. 2007; Espejel et al.
heterokaryons in the cerebellum of mice damaged with
enhanced by dysfunctioning events, as was demonstrated
in olfactory capability were recorded in cases in which elect-
expressed in zone I and the ability to detect these odorants
were expressed in zone I to the ventrolateral zone IV. High affinity pyridazine and n-decyl alcohol receptors are
in the odorant response was specific to the dorsomedial
Expressed in zone I and the ability to detect these odorants
did not observe polynuclear hybrid cells, therefore we could
high affinity pyridazine and n-decyl alcohol receptors are
indicated as “zone I” (Mori et al. 2000; Nagao et al. 2002),
from the dorsomedial zone I to the ventrolateral zone IV.
High affinity pyridazine and n-decyl alcohol receptors are
in zone I and the ability to detect these odorants
decreased after DCB treatment, whereas receptors for ben-
zene and ethyl acetate, expressed in the ventrolateral-most
zones, had no discrepancies in detection threshold (Vedin
e. 2004). In this study, we prepared amyl acetate, cineole,
and acetophenone solutions, commonly used in electrophysiologica
tests, and observed that the significant decline
in olfactory capability were recorded in cases in which electro-
trodes were placed in areas other than DCB sensitive ones.
We concluded that the receptors for the odorants employed
were distributed overall in the olfactory organ with no zone-
dependent pattern.

The detection of chimeric cells in the olfactory organ after
30 and 60 days from transplantation confirmed that there
was engraftment of human stem cells in the lesioned organ.
In addition, the dual color fluorescence in situ hybridiza-
tion revealed that the proportion of human-mouse hybrid
cells was reasonably high. Nuclear reprogramming by cell-
to-cell fusion is a possible pathway for stem cell plastic-
ity (Kashofer et al. 2006; Theise 2010), and it is strongly
enhanced by dysfunctioning events, as was demonstrated
by the high frequency of bone marrow-derived Purkinje
heterokaryons in the cerebellum of mice damaged with
high-dose irradiation (Wiersema et al. 2007; Espejel et al.
and heterozygous PCD mice (Diaz et al. 2012a). We
did not observe polynuclear hybrid cells, therefore we could
hypothesize that they underwent hybrid formation followed
by reduction division. Such an event displays a high degree
of aneuploidy that could lead to unstable heterokaryon
formation, with loss of donor genetic material (Duncan
et al. 2009) and represents a possible consequence of pro-
grressive loss of chromosomes during proliferative cycles. In
fact, the majority of heterokaryons, which we identified,
did not show LSI-LPL and LSI C-MYC signals together.
Unfortunately, it could not be established which chromo-
somes were lost, as observed also by Kashofer et al. (2006).
Moreover, chimeric cells were widely localized in the olfac-
tory organ also, and not only in the OE. Consequently, the
phenotype of hybrid cells is variable and hardly predictable.
Our data agreed with recent studies, which reported that
UCB-CD133 freshly isolated osteoblasts from mice, with cC1-induced liver damage and that the human DNA was gradually elimi-
nated after fusion; even if most human cells were not fused
to mouse cells, contrary to our results, fused cells directly
improved recovery of the mice from toxic insult (Zhou
et al. 2009). Other research has described stem cell fusion
as the principal mechanism underlying stem cell thera-
petic action (Alvarez-Dolado et al. 2003; Vassilopoulos et al.
2003; Wang et al. 2003; Willenbring et al. 2004; Yoon et al.
2005), and we cannot exclude its potential role in activating
the differentiating capability towards neuronal lineage by
means of gene expression shift. However, the very low inci-
dence of chimeric cells detected in transplanted mice com-
pared with the amount of OMP- and PGP 9.5-positive cells
meant that human stem cells did not represent a significant
fraction of the regenerating OE. Perhaps they temporar-
illy remained in the lesioned site, stimulating cell prolifera-
tion and differentiation by means of secretion of trophic
factors, as previously proposed (Noiseux et al. 2006; Zhou
et al. 2009; Sonderegger et al. 2010). During recent years,
umerous reports have been published supporting the
hypothesis that mesenchymal or bone marrow-derived stem
cells promote post-ischemic myocardial repair via parac-
rine signaling. The factors released may influence adjacent
cells and exert their actions via several mechanisms includ-
ing myocardial protection and neovascularization (Gnecchi
et al. 2008; Burdon et al. 2011). Among the broad variety
of cytokines, chemokines, and growth factors produced by
adult stem cells, some cytoprotective factors, such as
vascular endothelial growth factor (VEGF), basic fibro-
blast growth factor (bFGF), and hepatocyte growth factor
(HGF), also showed proangiogenic properties. Moreover,
it is known that hematopoietic and mesenchymal stem cells
stimulate activation of cardiac and renal (Tögel et al.
2005) resident stem cells as a consequence of some of their
released soluble factors, for example HGF and insulin-like
growth factor (IGF)-1 are not only anti-apoptotic but may
also enhance proliferation, mobilization, differentiation,
and function of endogenous progenitors or even restora-
tion of stem cell niches. More recently, in a murine model
of Rett syndrome (Derecki et al. 2012) and PCD mutant
mice (Diaz et al. 2012b), microglial cells generated from
transplanted bone marrow-derived MSCs reduced neuro-
logical disease without neuronal cell replacement: authors
proposed that microglia constituted a local source of neu-
roprotective factors capable of slowing the degenerative
process. Similar effects were also recently described for
ADSCs, which were discovered to induce nerve repair and
growth via BDNF production (Lopatina et al. 2011), and
could also explain the massive morphological and func-
tional recovery in the olfactory organ of DCB-treated
mice, despite the low number of engrafted stem cells. From
this perspective, resident germinative cells, rather than
heterokaryons, could be the source of new OSNs in tran-
planted mice: it has recently been demonstrated that hori-
zontal basal cells can repopulate the DCB-damaged region,
even if they generate a metaplastic respiratory epithelium
instead of the original OE (Xie et al. 2013). Authors sug-
gested that the cause could be the elimination of some cues
that normally drive them to neuro-olfactory differentiation.
ADSCs could help to reconstitute the correct environment.
However, further studies are necessary to analyze which
cell types ADSCs fused with and the fate of heterokaryons
in the lesioned tissue.
Conclusions
We demonstrated that ADSCs are actively involved in stimulating recovery from OSNs loss, through migration and engraftment in the damaged area, as well as differentiative induction of new OSNs, contributing to formation of an ideal new microenvironment that stimulates morphogenesis. Stem cell sources may be preferentially chosen by considering the accessibility, abundance, frequency, and expansion potential of the cells. Our findings are encouraging, because they suggest the possibility of a future central role in regenerative medicine for ADSCs, taking into account all their advantages described above. However, as a possible disadvantage, it should be considered that in some patients ADSCs are available to a limited degree (Kern et al. 2006). Moreover, we reported that the histological integrity was only partially restored 60 days after DCB submistration. We cannot exclude that the pool of transplanted stem cells is insufficient for a complete regeneration.

Supplementary material
Supplementary material can be found at http://www.chemse.oxfordjournals.org/

Funding
This work was supported by the Italian Ministry of University and Research (Grant number: FFO10) to V.F., S.B., S.P., and A.M.; Foundation ONLUS “Stem Cells and Life” to V.F. and R.P.R.; and Centre for Clinical Use of Stem Cells (C.U.C.C.S.) to G.S.

Acknowledgements
V.F.: conception and design, manuscript writing; S.B.: collection and assembly of data, data analysis and interpretation, manuscript writing; S.P.: collection and assembly of data, data analysis and interpretation, manuscript writing; A.M.: data analysis and interpretation, manuscript writing; G.S.: financial support; E.O.: provision of study material; A.T.B.: provision of study material; E.D.: data analysis and interpretation, manuscript writing; G.S.: financial support, manuscript writing; E.O.: provision of study material; R.P.R.: conception and design, data analysis and interpretation, financial support, manuscript writing.

References
Downloaded from http://chemse.oxfordjournals.org/ by guest on September 28, 2016
Adipose Stem Cells Promote Olfactory Regeneration · Page 11 of 13

Downloaded from http://chemse.oxfordjournals.org/ by guest on September 28, 2016

Tabatabai G, Frank B, Möhle R, Weller M, Wick W. 2006. Irradiation and
Sondergaard CS, Hess DA, Maxwell DJ, Weinheimer C, Rosová I, Creer MH,
tion of human adipose tissue-derived stem cells for peripheral nerve
Schwob JE, Youngentob SL, Mezza RC. 1995. Reconstitution of the rat
olfactory epithelium after methyl bromide-induced lesion. J Comp
Reinnervation of the rat olfactory bulb after Methyl Bromide-induced
Shipley MT. 1985. Transport of molecules from nose to brain: transneu-
ronal anterograde and retrograde labeling in the rat olfactory system
by wheat germ agglutinin-horseradish peroxidase applied to the nasal
Sondergaard CS, Hess DA, Maxwell DJ, Weinheimer C, Rosová I, Creer MH,
blood progenitors with high aldehyde dehydrogenase activity improve vas-
olfactory epithelium after methyl bromide-induced lesion. J Comp
DA, Kern RC. 2004. Pathology of the olfactory epithelium: smoking and
Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M,
Lagasse E, Finegold M, Olson S, Grompe M. 2003. Cell fusion is the
422(6934):897–901.
Williams SK, Gilbey T, Barnett SC. 2004. Immunohistochemical studies of the
cellular changes in the peripheral olfactory system after zinc sulfate
Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang Ji, Mizuno H,
Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. 2002. Human adi-
pose tissue is a source of multipotent stem cells. Mol Biol Cell.
13(12):4279–4295.